Impact of Arc flash study

Bolted fault:

A short-circuit condition that assumes zero impedance exists at the point of the fault.

Voltage (Vac):

Enter an AC voltage between 208 V and 15,000 V. AC voltage levels outside of this range, and DC voltage levels.

Arc flash:

An electric arc event with thermal energy dissipated as radiant, convective, and conductive heat.

Arc-flash boundary:

A distance from a prospective arc source at which the incident energy is calculated to be 5.0 J/cm2 (1.2 Cal/cm2).

Arcing fault current:

A fault current flowing through an electrical arc plasma.

Electrode configuration: Choose from the following:

VCB: Vertical conductor (electrode) in a box

Figure 1:VCB Configuration

VCBB: Vertical conductor (electrode) in a box terminated in an insulating barrier.

Figure 2:VCBB Configuration

HCB: Vertical conductor (electrode) in a box.

Figure 3:HCB Configuration

VOA: Vertical conductor (electrode) in open air.

Figure 4:VOA Configuration

HOA: Horizontal conductor (electrode) in open air:

Conductor gap (mm):

The distance between the conductors (electrodes). This value is always in mm. It is pre-populated with typical values from IEEE 1548 2018, based on the selected Equipment Type.

Equipment class	Typical bus gaps (mm	Enclosure Size ($H \times W \times D$	
		SI units (metric)	Imperial units
15 kV switchgear	152	$\begin{array}{c} 1143 \text{ mm} \times 762 \text{ mm} \times 762 \\ \text{mm} \end{array}$	45 in \times 30 in \times 30 in
15 kV MCC	152	914.4 mm \times 914.4 mm \times 914.4 mm	$36 \text{ in} \times 36 \text{ in} \times 36 \text{ in}$
5 kV switchgear	104	914.4 mm \times 914.4 mm \times 914.4 mm	$36 \text{ in} \times 36 \text{ in} \times 36 \text{ in}$
5 kV switchgear	104	$\begin{array}{c} 1143 \text{ mm} \times 762 \text{ mm} \times 762 \\ \text{mm} \end{array}$	45 in \times 30 in \times 30 in
5 kV MCC	104	$\begin{array}{c} 660.4 \text{ mm} \times 660.4 \text{ mm} \times 660.4 \\ \text{mm} \end{array}$	$26 \text{ in} \times 26 \text{ in} \times 26 \text{ in}$
Low-voltage switchgear	32	$508~mm \times 508~mm \times 508~mm$	20 in \times 20 in \times 20 in
Shallow low-voltage MCCs and panel boards	25	355.6 mm × 304.8 mm × ≤203.2 mm	14 in \times 12 in $\times \leq 8$ in
Deep low-voltage MCCs and panel boards	25	355.6 mm × 304.8 mm × >203.2 mm	14 in \times 12 in \times >8 in
Cable junction box 13		355.6 mm × 304.8 mm × ≤203.2 mm or 355.6 mm × 304.8 mm × >203.2 mm	$14 \text{ in } \times 12 \text{ in } \times \leq 8 \text{ in}$ or $14 \text{ in } \times 12 \text{ in } \times >8 \text{ in}$

Table 1:Conductor gap

For below cases the arc flash study has been performed and impact of arc flash parameters has been observed. following cases are

Case:1=Increasing Voltage Level O.415kV to 3.3kV

Case:2= Increasing Voltage Level 3.3kV to 6.6kV

Case:3= Increasing Voltage Level 6.6kV to 11kV

If I increase the system voltages in the Above Three cases, what are the impacts in Arc Flash parameters are (Incident Energy, Arc flash Boundary, Arcing Current) See in below.

Taken input parameters:

Normal voltage	=	0.415 kV
Bolted faulted current	=	20 kA
Conductor gap	=	32 mm
Working distance	=	24 inch
Equi <u>pment type</u>	=	Switchgear

Height, Width, Depth = 660 mm

Electrode configuration = HCB

Fault clearing time = 0.200 sec

Impact of arc flash for the above parameters

Figure 6:Reference Case

I used 0.415 kV as my reference voltage. I've set the voltage level to 0.415 kV in the image above. At that moment, take note of the incident energy, arc flash boundary, and arcing current values, which are 7.50 Cal/cm2, 59.19 inch, and 13.211 kA respectively. Three Cases in which we changed the voltage levels are also listed below. And another input parameters are I have taken all parameters always same Bolted Fault current(kV), Conductor gap(mm), Working distance(inch), Equipment type-high(mm),Width(mm).Depth(mm),Electrode configuration and Fault Clearing time.

Input Method Batch	Plots Results				
Method and Fault Type Phases Fault Type IEEE 1584-2018 3-Phase 3-Phase	Arc Flash Results - 100% larc				
Input Parameters Nom. V (kVLL) Pre-Fault (%) Bolted Fault Current (kA)	18.020 15.58 106.65				
3.30 100 20.000	Arc Flash Results - Iarc Var (min)				
Conductor Gap (mm) Working Distance (inch)	Arcing Current (kA) Incident Energy (cal/cm2) Arc Flash Boundary (inch) 17.37 14.98 104.26				
	Correction Factors				
Equipment Type Switchgear V Typical Data	larc Variation - CF (pu) Enclosure Size - (1/CF) (pu) 0.964 0.941				
Height (mm) Width (mm) Depth (mm) 660 660 660 Electrode Configuration HCB V					
Fault Clearing Time User-Defined FCT (sec) 0.200 User-Defined FCT					
	Calculation Warnings				
User-Defined FCT min (sec)	A				
0.200	Help				

Case:1=Increasing Voltage Level O.415kV to 3.3kV

Figure 7:Case:1

When comparing with Reference case, I have increased the voltage level from 0.415kV to 3.3kV and another all-input parameter are as previous case. Above the results are incident energy, arc flash boundary and arcing current always increases. The results are tabulated in table:2.

Case:2= Increasing Voltage Level 3.3kV to 6.6kV

Mathead and Facts Toront						
Method and Fault Type Method P	hases Fault Type	Arc Flash Results - 100% larc				
IEEE 1584-2018 V 3-P	nase V 3-Phase V					
Input Parameters		Arcing Current (kA) Incident Energy (cal/cm2) Arc Flash Boundary (inch)				
Nom. V (kVLL) Pre-Fault (%)	Bolted Fault Current (kA)	10.201				
6.60 100	20.000	Arc Flash Results - Iarc Var (min)				
1						
	-	Arcing Current (kA) Incident Energy (cal/cm2) Arc Flash Boundary (inch)				
Conductor Gap (mm)	Working Distance (inch)	17.91 16.41 112.09				
32.0	24.0	Correction Factors				
Equipment Type		larc Variation - CF (pu) Enclosure Size - (1/CF) (pu)				
Switchgear V	Typical Data	0.982 0.941				
Height (mm) Width (mm)	Depth (mm)					
Height (mm) Width (mm) 660 660	Depth (mm) 660					
Height (mm) Width (mm) 660 660 Electrode Configuration	Depth (mm) 660					
Height (mm) Width (mm) 660 660 Electrode Configuration HCB \checkmark	Depth (mm) 660					
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time	Depth (mm) 660					
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time User-Defined FCT (sec)	Depth (mm) 660 Protective Device Type					
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time User-Defined FCT (sec) 0.200	Depth (mm) 660 Protective Device Type User-Defined FCT ~					
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time User-Defined FCT (sec) 0.200	Depth (mm) 660 Protective Device Type User-Defined FCT ~					
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time User-Defined FCT (sec) 0.200	Depth (mm) 660 Protective Device Type User-Defined FCT ~	Calculation Warnings				
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time User-Defined FCT (sec) 0.200 User-Defined FCT (sec) 0.200 User-Defined FCT (sec)	Depth (mm) 660 Protective Device Type User-Defined FCT ✓					
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time User-Defined FCT (sec) 0.200 User-Defined FCT min (sec) 0.200	Depth (mm) 660 Protective Device Type User-Defined FCT ✓	<image/>				

Figure 8:Case:2

When comparing with Reference case, I have increased the voltage level from 03.3kV to 6.6kV and another all-input parameter are as previous case. Above the results are incident energy, arc flash boundary and arcing current always increases comparatively Case 1. The results are tabulated in table:2.

Case:3= Increasing Voltage Level 6.6kV to 11kV

Method and Fault Type						
Method P	Phases Fault Type	Arc Flash Results - 100% larc				
IEEE 1584-2018 V 3-PH	hase V 3-Phase V	Arcing Current (kA) Incident Energy (cal/cm2) Arc Flash Boundary (inch)				
Input Parameters		18.509 18.24 122.20				
Nom. V (kVLL) Pre-Fault (%)	Bolted Fault Current (kA)					
11.0 100	20.000	Arc Flash Results - Iarc Var (min)				
tomarine requirements	mannun					
		Arcing Current (kA) Incident Energy (cal/cm2) Arc Flash Boundary (inch)				
Conductor Gap (mm)	Working Distance (inch)	18.27 17.98 121.16				
32.0	24.0					
Destaurantestaurantestaurantest	transministra	Correction Factors				
Equipment Type		larc Variation - CF (pu) Enclosure Size - (1/CF) (pu)				
Cuitebasse	Typical Data	0.987 0.941				
Switchgear	i jpical sata					
Height (mm) Width (mm) 660 660 Electrode Configuration	Depth (mm) 660					
Height (mm) Width (mm) 660 660 Electrode Configuration HCB ~	Depth (mm) 660					
Height (mm) Width (mm) 660 660 Electrode Configuration HCB ~	Depth (mm) 660					
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time User-Defined FCT (sec)	Depth (mm) 660 Protective Device Type					
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time User-Defined FCT (sec) 0.200	Depth (mm) 660 Protective Device Type User-Defined FCT V					
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time User-Defined FCT (sec) 0.200	Depth (mm) 660 Protective Device Type User-Defined FCT v					
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time User-Defined FCT (sec) 0.200	Depth (mm) 660 Protective Device Type User-Defined FCT v	Calculation Warnings				
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time User-Defined FCT (sec) 0.200	Depth (mm) 660 Protective Device Type User-Defined FCT v	Calculation Warnings				
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time User-Defined FCT (sec) 0.200 User-Defined FCT min (sec)	Depth (mm) 660 Protective Device Type User-Defined FCT v	Calculation Warnings				
Height (mm) Width (mm) 660 660 Electrode Configuration HCB Fault Clearing Time User-Defined FCT (sec) 0.200 User-Defined FCT min (sec) 0.200	Depth (mm) 660 Protective Device Type User-Defined FCT v					

Table 2:Case:3

Figure 9:Case:3

When comparing with Reference case, I have increased the voltage level from 03.3kV to 6.6kV and another all-input parameter are as previous case. Above the results are incident energy, arc flash boundary and arcing current always increases comparatively Case 1 & Case 2. The results are tabulated in table:2.

Table 2: Input & Output results

Inputs							Outputs				
Case NO	System Voltage (kV)	Fault curren t(kA)	Conductor gap(mm)	Working distance (inch)	Equipment type	Electrode configuration	Height, Width, Depth, (mm)	FCT (s)	Arcing current (kA)	Incident energy (Cal/cm2)	Arc flash boundary (Inch)
Reference case	0.415	20	32	24	switchgear	НСВ	660	0.200	13.21	7.50	59.19
Case 1	3.3	20	32	24	switchgear	НСВ	660	0.200	18.02	15.58	106.65
Case 2	6.6	20	32	24	switchgear	НСВ	660	0.200	18.23	16.73	113.36
Case 3	11	20	32	24	switchgear	НСВ	660	0.200	18.50	18.24	122.20

Conclusions:

From the above cases, it is observed that the Variation in system voltage, results in Arcing current Variation. Arcing current has a significant impact in incident energy, proportionately influencing in Arc flash boundary.