Impact of Arc flash study

Bolted fault:

A short-circuit condition that assumes zero impedance exists at the point of the fault.

Voltage (Vac):

Enter an AC voltage between 208 V and 15,000 V. AC voltage levels outside of this range, and DC voltage levels.

Arc flash:

An electric arc event with thermal energy dissipated as radiant, convective, and conductive heat.

Arc-flash boundary:

A distance from a prospective arc source at which the incident energy is calculated to be $5.0 \mathrm{~J} / \mathrm{cm} 2$ (1.2 Cal/cm2).

Arcing fault current:

A fault current flowing through an electrical arc plasma.

Electrode configuration: Choose from the following:
VCB: Vertical conductor (electrode) in a box

Figure 1:VCB Configuration
VCBB: Vertical conductor (electrode) in a box terminated in an insulating barrier.

Figure 2:VCBB Configuration

Dinesh R

HCB: Vertical conductor (electrode) in a box.

Figure 3:HCB Configuration

VOA: Vertical conductor (electrode) in open air.

Figure 4:VOA Configuration

HOA: Horizontal conductor (electrode) in open air:

Figure 5:HOA Configuration

Conductor gap (mm):

The distance between the conductors (electrodes). This value is always in mm. It is pre-populated with typical values from IEEE 1548 2018, based on the selected Equipment Type.

Table 1:Conductor gap

Equipment class	Typical bus gaps (mm	Enclosure Size $(\mathrm{H} \times \mathrm{W} \times \mathrm{D}$	
		SI units (metric)	Imperial units
15 kV switchgear	152	$\begin{gathered} 1143 \mathrm{~mm} \times 762 \mathrm{~mm} \times 762 \\ \mathrm{~mm} \\ \hline \end{gathered}$	45 in $\times 30$ in $\times 30$ in
15 kV MCC	152	$\begin{gathered} 914.4 \mathrm{~mm} \times 914.4 \mathrm{~mm} \times 914.4 \\ \mathrm{~mm} \\ \hline \end{gathered}$	36 in $\times 36$ in $\times 36$ in
5 kV switchgear	104	$\begin{gathered} 914.4 \mathrm{~mm} \times 914.4 \mathrm{~mm} \times 914.4 \\ \mathrm{~mm} \\ \hline \end{gathered}$	36 in $\times 36$ in $\times 36$ in
5 kV switchgear	104	$\begin{gathered} 1143 \mathrm{~mm} \times 762 \mathrm{~mm} \times 762 \\ \mathrm{~mm} \\ \hline \end{gathered}$	45 in $\times 30$ in $\times 30$ in
5 kV MCC	104	$\begin{gathered} 660.4 \mathrm{~mm} \times 660.4 \mathrm{~mm} \times 660.4 \\ \mathrm{~mm} \end{gathered}$	26 in $\times 26$ in $\times 26$ in
Low-voltage switchgear	32	$508 \mathrm{~mm} \times 508 \mathrm{~mm} \times 508 \mathrm{~mm}$	20 in $\times 20$ in $\times 20$ in
Shallow low-voltage MCCs and panel boards	25	$\begin{gathered} 355.6 \mathrm{~mm} \times 304.8 \mathrm{~mm} \times \\ \leq 203.2 \mathrm{~mm} \\ \hline \end{gathered}$	14 in $\times 12$ in $\times \leq 8$ in
Deep low-voltage MCCs and panel boards	25	$\begin{gathered} 355.6 \mathrm{~mm} \times 304.8 \mathrm{~mm} \times \\ >203.2 \mathrm{~mm} \end{gathered}$	14 in $\times 12$ in $\times>8$ in
Cable junction box	13	$\begin{gathered} 355.6 \mathrm{~mm} \times 304.8 \mathrm{~mm} \times \\ \leq 203.2 \mathrm{~mm} \\ \text { or } \\ 355.6 \mathrm{~mm} \times 304.8 \mathrm{~mm} \times \\ >203.2 \mathrm{~mm} \end{gathered}$	14 in $\times 12$ in $\times \leq 8$ in or 14 in $\times 12$ in $\times>8$ in

For below cases the arc flash study has been performed and impact of arc flash parameters has been observed. following cases are

Case:1=Increasing Voltage Level 0.415 kV to 3.3kV

Case:2= Increasing Voltage Level 3.3kV to 6.6kV
Case:3= Increasing Voltage Level 6.6kV to 11 kV
If I increase the system voltages in the Above Three cases, what are the impacts in Arc Flash parameters are (Incident Energy, Arc flash Boundary, Arcing Current) See in below.

Taken input parameters:

Normal voltage	$=0.415 \mathrm{kV}$
Bolted faulted current	$=20 \mathrm{kA}$
Conductor gap	$=32 \mathrm{~mm}$
Working distance	$=24$ inch
Equipment type	$=$ Switchgear

Height, Width, Depth $=660 \mathrm{~mm}$
Electrode configuration $=\mathrm{HCB}$
Fault clearing time $=0.200 \mathrm{sec}$
Impact of arc flash for the above parameters

Figure 6:Reference Case

I used 0.415 kV as my reference voltage. I've set the voltage level to 0.415 kV in the image above. At that moment, take note of the incident energy, arc flash boundary, and arcing current values, which are $7.50 \mathrm{Cal} / \mathrm{cm} 2,59.19 \mathrm{inch}$, and 13.211 kA respectively. Three Cases in which we changed the voltage levels are also listed below. And another input parameters are I have taken all parameters always same Bolted Fault current(kV), Conductor gap(mm), Working distance(inch), Equipment typehigh(mm),Width(mm).Depth(mm),Electrode configuration and Fault Clearing time.

Case:1=Increasing Voltage Level 0.415 kV to 3.3 kV

Figure 7:Case:1
When comparing with Reference case, I have increased the voltage level from 0.415 kV to 3.3 kV and another all-input parameter are as previous case. Above the results are incident energy, arc flash boundary and arcing current always increases. The results are tabulated in table:2.

Case:2= Increasing Voltage Level 3.3kV to 6.6kV

Figure 8:Case:2
When comparing with Reference case, I have increased the voltage level from 03.3 kV to 6.6 kV and another all-input parameter are as previous case. Above the results are incident energy, arc flash boundary and arcing current always increases comparatively Case 1. The results are tabulated in table:2.

Case:3= Increasing Voltage Level 6.6 kV to 11 kV
Table 2:Case:3

Figure 9:Case:3
When comparing with Reference case, I have increased the voltage level from 03.3 kV to 6.6 kV and another all-input parameter are as previous case. Above the results are incident energy, arc flash boundary and arcing current always increases comparatively Case $1 \&$ Case2. The results are tabulated in table:2.

Table 2: Input \& Output results

Inputs									Outputs		
Case NO	System Voltage (kV)	Fault curren t(kA)	Conductor gap(mm)	Working distance (inch)	Equipment type	Electrode configuration	Height, Width, Depth, (mm)	$\begin{gathered} \text { FCT } \\ \text { (s) } \end{gathered}$	Arcing current (kA)	$\begin{aligned} & \text { Incident } \\ & \text { energy } \\ & \text { (Cal/cm2) } \end{aligned}$	Arc flash boundary (Inch)
Reference case	0.415	20	32	24	switchgear	HCB	660	0.200	13.21	7.50	59.19
Case 1	3.3	20	32	24	switchgear	HCB	660	0.200	18.02	15.58	106.65
Case 2	6.6	20	32	24	switchgear	HCB	660	0.200	18.23	16.73	113.36
Case 3	11	20	32	24	switchgear	HCB	660	0.200	18.50	18.24	122.20

Conclusions:

From the above cases, it is observed that the Variation in system voltage, results in Arcing current Variation. Arcing current has a significant impact in incident energy, proportionately influencing in Arc flash boundary.

